博客
关于我
Keras自定义网络进行十分类图像识别
阅读量:262 次
发布时间:2019-03-01

本文共 4177 字,大约阅读时间需要 13 分钟。

import osimport numpy as npimport tensorflow as tfimport randomimport seaborn as snsimport matplotlib.pyplot as pltfrom keras.models import Sequential, Modelfrom keras.layers import Dense, Dropout, Activation, Flatten, Inputfrom keras.layers.convolutional import Conv2D, MaxPooling2Dfrom keras.optimizers import RMSprop, Adam, SGDfrom keras.preprocessing import imagefrom keras.preprocessing.image import ImageDataGeneratorfrom keras.utils import np_utilsfrom sklearn.model_selection import train_test_split

图片预处理

def read_and_process_image(data_dir,width=32, height=32, channels=3, preprocess=False):        train_classes= [data_dir +  i for i in os.listdir(data_dir) ]    train_images = []    for train_class in train_classes:        train_images= train_images + [train_class + "/" + i for i in os.listdir(train_class)]        random.shuffle(train_images)        def read_image(file_path, preprocess):        img = image.load_img(file_path, target_size=(height, width))        x = image.img_to_array(img)        x = np.expand_dims(x, axis=0)        # if preprocess:            # x = preprocess_input(x)        return x        def prep_data(images, proprocess):        count = len(images)        data = np.ndarray((count, height, width, channels), dtype = np.float32)                for i, image_file in enumerate(images):            image = read_image(image_file, preprocess)            data[i] = image                return data        def read_labels(file_path):        labels = []        for i in file_path:            if 'airplane' in i:                label = 0            elif 'automobile' in i:                label = 1            elif 'bird' in i:                label = 2            elif 'cat' in i:                label = 3            elif 'deer' in i:                label = 4            elif 'dog' in i:                label = 5            elif 'frog' in i:                label = 6            elif 'horse' in i:                label = 7            elif 'ship' in i:                label = 8            elif 'truck' in i:                label = 9            labels.append(label)                return labels        X = prep_data(train_images, preprocess)    labels = read_labels(train_images)        assert X.shape[0] == len(labels)        print("Train shape: {}".format(X.shape))        return X, labels

读取训练集,以及测试集

# 读取训练集图片WIDTH = 32HEIGHT = 32CHANNELS = 3X, y = read_and_process_image('D:/Python Project/cifar-10/train/',width=WIDTH, height=HEIGHT, channels=CHANNELS)# 读取测试集图片WIDTH = 32HEIGHT = 32CHANNELS = 3test_X, test_y = read_and_process_image('D:/Python Project/cifar-10/test/',width=WIDTH, height=HEIGHT, channels=CHANNELS)# 统计ysns.countplot(y)# 统计ysns.countplot(test_y)

one-hot编码

train_y = np_utils.to_categorical(y)test_y = np_utils.to_categorical(test_y)

显示图片

# 显示图片def show_picture(X, idx):    plt.figure(figsize=(10,5), frameon=True)    img = X[idx,:,:,::-1]    img = img/255    plt.imshow(img)    plt.show()for idx in range(0,3):    show_picture(X, idx)

定义模型

num_classes=10model = Sequential()model.add(Conv2D(32 ,3 ,input_shape=(HEIGHT,WIDTH,CHANNELS),activation='relu',padding='same'))model.add(Conv2D(32 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(64 ,3 ,activation='relu',padding='same'))model.add(Conv2D(64 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(128 ,3 ,activation='relu',padding='same'))model.add(Conv2D(128 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(256 ,3 ,activation='relu',padding='same'))model.add(Conv2D(256 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Flatten())model.add(Dense(256, activation='relu'))model.add(Dropout(0.5))model.add(Dense(256, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])model.summary()

训练模型

history = model.fit(X,train_y, validation_data=(test_X, test_y),epochs=20,batch_size=100,verbose=True)score = model.evaluate(test_X, test_y, verbose=0)print("Large CNN Error: %.2f%%" %(100-score[1]*100))

 

转载地址:http://kshv.baihongyu.com/

你可能感兴趣的文章
next项目部署到服务器pm2进程守护
查看>>
nexus 介绍
查看>>
nexus上传jar
查看>>
Nexus指南中的更新强调集成和透明度的重要性
查看>>
Nexus指南已经发布
查看>>
Nexus(1):Nexus的安装与配置
查看>>
NFC技术:概述
查看>>
NFinal学习笔记 02—NFinalBuild
查看>>
NFS
查看>>
nfs mount 故障 mount.nfs: access denied by server while mounting 10.0.100.208:/backup_usb
查看>>
NFS Server及Client配置与挂载详解
查看>>
NFS 服务配置篇
查看>>
NFS共享文件系统搭建
查看>>
nfs复习
查看>>
NFS安装配置
查看>>
NFS服务器配置-服务启动与停止
查看>>
NFS的安装以及windows/linux挂载linux网络文件系统NFS
查看>>
NFS的常用挂载参数
查看>>
NFS网络文件系统
查看>>
NFS远程目录挂载
查看>>